Устройство электрохимзащиты для газопровода
Коррозия оказывает пагубное влияние на техническое состояние подземных трубопроводов, под ее воздействием нарушается целостность газопровода, появляются трещины. Для защиты от такого процесса применяют электрохимзащиту газопровода.
Коррозия подземных трубопроводов и средства защиты от нее
На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.
Виды коррозии:
- Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
- Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
- Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.
Методы электрохимзащиты от коррозии:
- пассивный метод;
- активный метод.
Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:
- битум;
- полимерная лента;
- каменноугольный пек;
- эпоксидные смолы.
На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.
Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.
Принцип действия электрохимзащиты
Чтобы защитить газопровод от коррозии, нужно создать катодную реакцию и исключить анодную. Для этого на защищаемом трубопроводе принудительно создается отрицательный потенциал.
В грунте размещают анодные электроды, подключают отрицательный полюс внешнего источника тока непосредственно к катоду – защищаемому объекту. Для замыкания электрической цепи, положительный полюс источника тока соединяется с анодом – дополнительным электродом, установленным в общей среде с защищаемым трубопроводом.
Анод в данной электрической цепи выполняет функцию заземления. За счет того, что анод имеет более положительный потенциал, чем металлический объект, происходит его анодное растворение.
Процесс коррозии подавляется под воздействием отрицательно заряженного поля защищаемого объекта. При катодной защите от коррозии, процессу порчи будет подвергается непосредственно анодный электрод.
Для увеличения срока эксплуатации анодов, их изготавливают из инертных материалов, устойчивых к растворению и другим воздействиям внешних факторов.
Станция электрохимзащиты
Станция электрохимзащиты – это устройство, которое служит источником внешнего тока в системе катодной защиты. Данная установка подключается к сети, 220 Вт и производит электричество с установленными выходными значениями.
Станция устанавливается на земле рядом с газопроводом. Она должна иметь степень защиты IP34 и выше, так как работает на открытом воздухе.
Станции катодной защиты могут иметь различные технические параметры и функциональные особенности.
Типы станций катодной защиты:
- трансформаторные;
- инверторные.
Трансформаторные станции электрохимзащиты постепенно отходят в прошлое. Они представляют собой конструкцию из трансформатора, работающего с частотой 50 Гц и тиристорного выпрямителя. Минусом таких устройств является несинусоидальная форма генерируемой энергии. Вследствие чего, на выходе происходит сильное пульсирование тока и снижается его мощность.
Инверторная станция электрохимзащиты имеет преимущество у трансформаторной. Ее принцип основан на работе высокочастотных импульсных преобразователей. Особенностью инверторных устройств является зависимость размера трансформаторного блока от частоты преобразования тока. При более высокой частоте сигнала требуется меньше кабеля, снижаются тепловые потери. В инверторных станциях, благодаря сглаживающим фильтрам, уровень пульсации производимого тока имеет меньшую амплитуду.
Электрическая цепь, которая приводит в работу станцию катодной защиты, выглядит так: анодное заземление – грунт – изоляция объекта защиты.
При установке станции защиты от коррозии учитываются следующие параметры:
- положение анодного заземления (анод-земля);
- сопротивление грунта;
- электропроводимость изоляции объекта.
Установки дренажной защиты для газопровода
При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.
Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.
Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.
Установки гальванической электрохимзащиты
Использование протекторных установок гальванической защиты трубопровода оправданно, если вблизи объекта отсутствует источник напряжения – ЛЭП, или участок газопровода недостаточно внушителен по размерам.
Гальваническое оборудование служит для защиты от коррозии:
- подземных металлических сооружений, не подсоединенных электрической цепью к внешним источникам тока;
- отдельных незащищенных частей газопроводов;
- частей газопроводов, которые изолированы от источника тока;
- строящихся трубопроводов, временно не подключенных к станциям защиты от коррозии;
- прочих подземных металлических сооружений (сваи, патроны, резервуары, опоры и др.).
Гальваническая защита сработает наилучшим образом в почвах с удельным электрическим сопротивлением, находящимся в пределах 50 Ом.
Установки с протяженными или распределенными анодами
При использовании трансформаторной станции защиты от коррозии ток распределяется по синусоиде. Это неблагоприятным образом сказывается на защитном электрическом поле. Происходит либо избыточное напряжение в месте защиты, которое влечет за собой высокий расход электроэнергии, либо неконтролируемая утечка тока, что делает электрохимзащиту газопровода неэффективной.
Практика использования протяженных или распределенных анодов помогает обойти проблему неравномерного распределения электричества. Включение распределенных анодов в схему электрохимзащиты газопровода способствует увеличению зоны защиты от коррозии и сглаживанию линии напряжения. Аноды при такой схеме размещаются в земле, на протяжении всего газопровода.
Регулировочное сопротивление или специальное оборудование обеспечивает изменение тока в необходимых пределах, изменяется напряжение анодного заземления, при помощи этого регулируется защитный потенциал объекта.
Если используется сразу несколько заземлителей, напряжение защитного объекта можно изменять, меняя количество активных анодов.
ЭХЗ трубопровода посредством протекторов основана на разности потенциалов протектора и газопровода, находящегося в земле. Почва в данном случае представляет собой электролит; металл восстанавливается, а тело протектора разрушается.